SI-traceable TOA Lunar Irradiance Potential Tie-points for the ROLO Model

Steven W. Brown/NIST

Keith Lykke (dec.), Claire Cramer (DOE),
John Woodward/NIST
Gene Eplee/NASA Goddard
Tom Stone/USGS
Sophie Lacherade, CNES

FY2014 CLARREO SDT Meeting:

Can the Moon be used as an Absolute Exo-Atmospheric Calibration Target for CLARREO?

What are the current uncertainties in the Absolute Exo-Atmospheric Lunar Irradiance? and How low do we think they might go?

Today's OUTLINE

- Summarize absolute TOA lunar irradiance measurements by NIST from the Whipple Observatory, Mt. Hopkins, AZ
 - Development of spectrograph-based transfer standards
- Phase-dependence to lunar irradiance
 - SeaWiFS/MODIS and PLEIADES
- Libration correction by NASA at 55° (VIIRS)

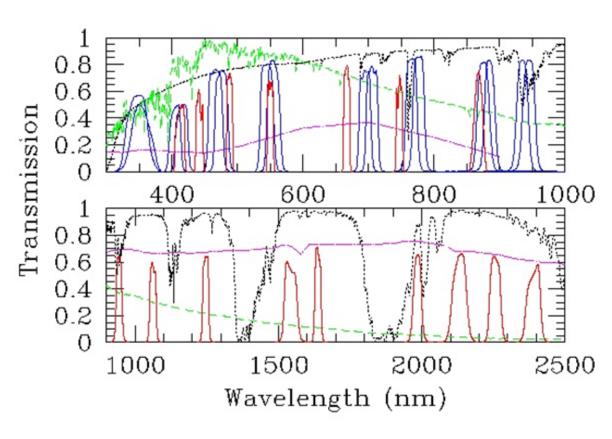
Gene Eplee NASA

ROLO Observatory

Flagstaff, AZ Altitude 2143 m

ROLO Observational Program

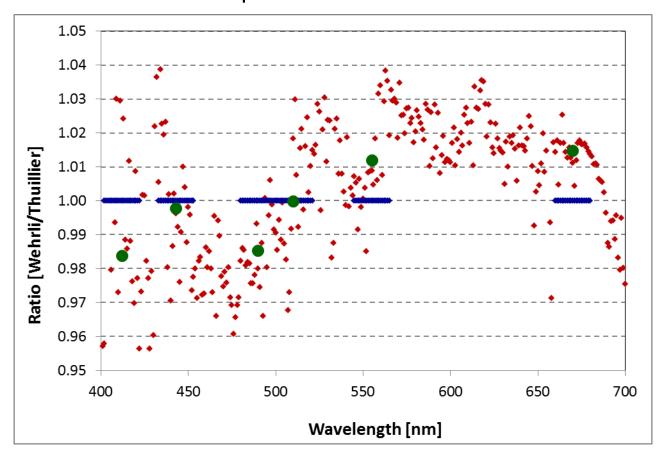
Filter bands


- VNIR 23 bands, 350-950 nm
- SWIR 9 bands, 950-2500 nm

- Spatially resolved radiance images
 - 6+ years in operation, >85000 lunar images
 - phase angle coverage from eclipse to 90°
- Operations ended in 2003

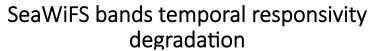
SWIR Telescope

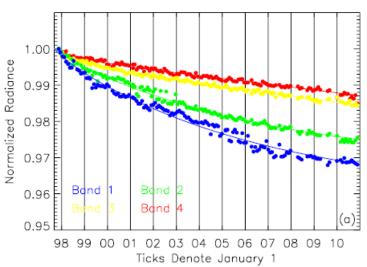
VNIR Telescope

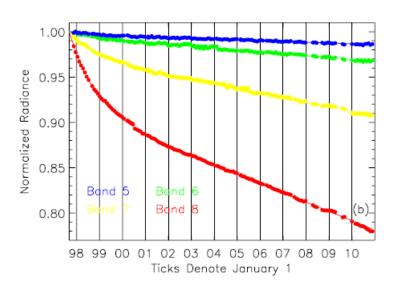

^{*}Courtesy of Tom Stone, USGS, Flagstaff, AZ

ROLO Model: Equivalent Lunar Disk Reflectance

$$\ln A_k = \sum_{i=0}^{3} a_{ik} g^i + \sum_{j=1}^{3} b_{jk} \Phi^{2j-1} + c_1 \theta + c_2 \phi + c_3 \Phi \theta_+ c_4 \Phi \phi$$
$$+ d_{1k} e^{-g/p_1} + d_{2k} e^{-g/p_2} + d_{3k} \cos[(g - p_3)/p_4], \quad (10)$$

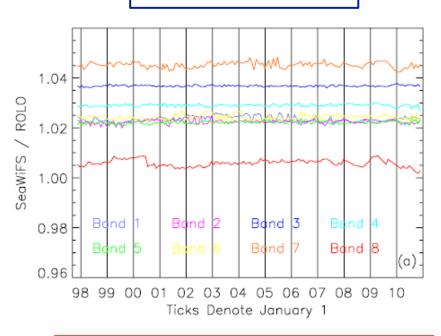

- There is a point-spread correction to the lunar data (for radiance).
 - Not needed for Irradiance, not clear to me how this is currently handled.
- To get to Irradiance, a reference Solar spectrum is used; the ROLO Model v311g uses Wehrli, NASA Goddard was using Thuillier.


Ratio of Wehrli to Thuillier Models of Solar Spectral Irradiances

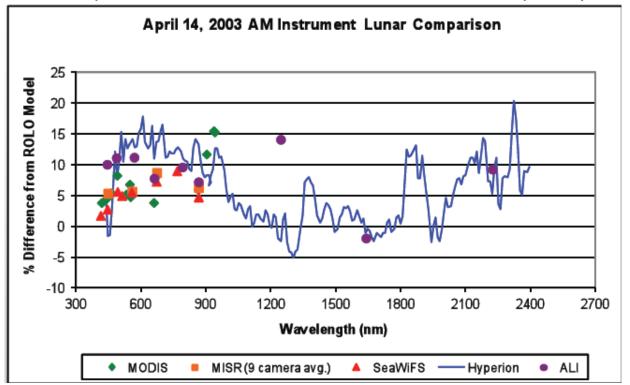


SeaWiFS Band-center Wavelengths ● and Bandwidths ——

Use of the ROLO Model to trend Satellite Sensors Band Response (Gene Eplee and the NASA Goddard OBPG)



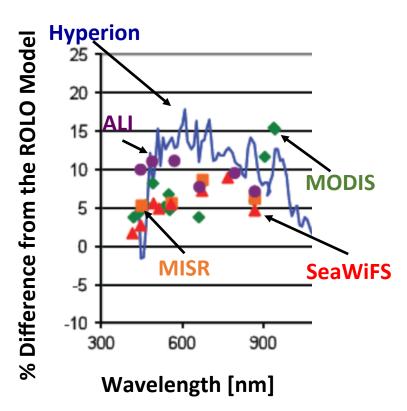
Corrected using the ROLO Model Relative only Phase angles kept to ± 7°


StDevMean = ~ 0.1 %

Lunar measurements can be used To trend satellite sensor responsivity With very low uncertainties.

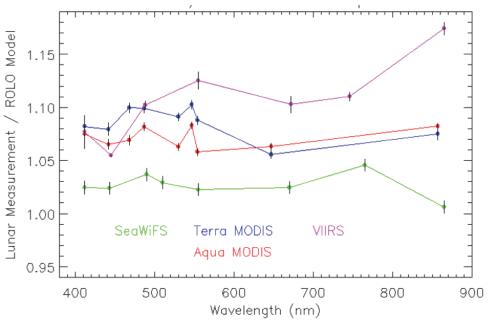
How well does it do? & What are the uncertainties?

Jim Butler, presented at the Lunar Calibration Workshop, May 2012



Relative differences between instruments include uncertainty components from:

- Use of different solar irradiance spectra
- Different approaches in calculating integrated lunar irradiances
- Inherent differences/uncertainties in instrument calibrations


Uncertainties in the ROLO Model estimated to be 5 % to 10 %, not SI traceable.

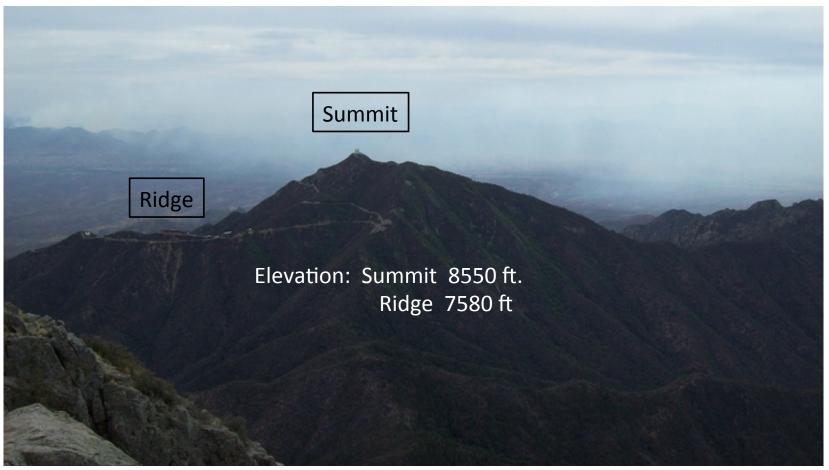
ROLO Model v Satellite sensors (Absolute)

SeaWiFS difference up to ~ 10 % MODIS differences up to ~ 15 %

SeaWiFS difference up to ~ 5 % MODIS differences up to ~ 10 % VIIRS differences up to ~15 % (comp. w/MODIS)

On-Orbit SI-traceable, *k*=2, Sensor Accuracy Requirements Kurt Thome, NASA, NIST Lunar Calibration Workshop, May 2012

- Operational systems
 - 3 % absolute with 1 % sensor-to-sensor
- Climate applications (CLARREO)
 - 0.3 % 500 nm to 900 nm; 1 % other spectral regions

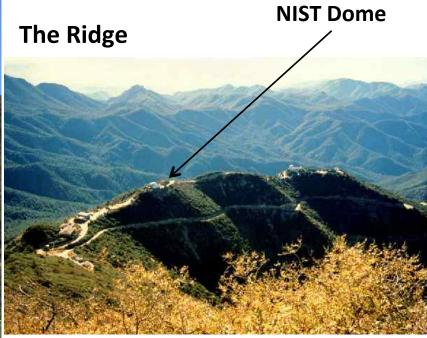

Jim Butler, NASA, NIST Lunar Calibration Workshop, May 2012

While CLARREO needs 0.3 % k=2, a lunar irradiance model with 1 % to 3 % absolute uncertainties k=2 relative to the SI makes the Moon a viable (affordable) on-orbit source for

- 1.Transfer to Orbit Effects
- 2.Ensuring consistency between the calibrations not only of overlapping but also non-overlapping sensors (to help minimize gap effects)
- 3. Possibly/potentially as an absolute SI traceable on-orbit calibration source

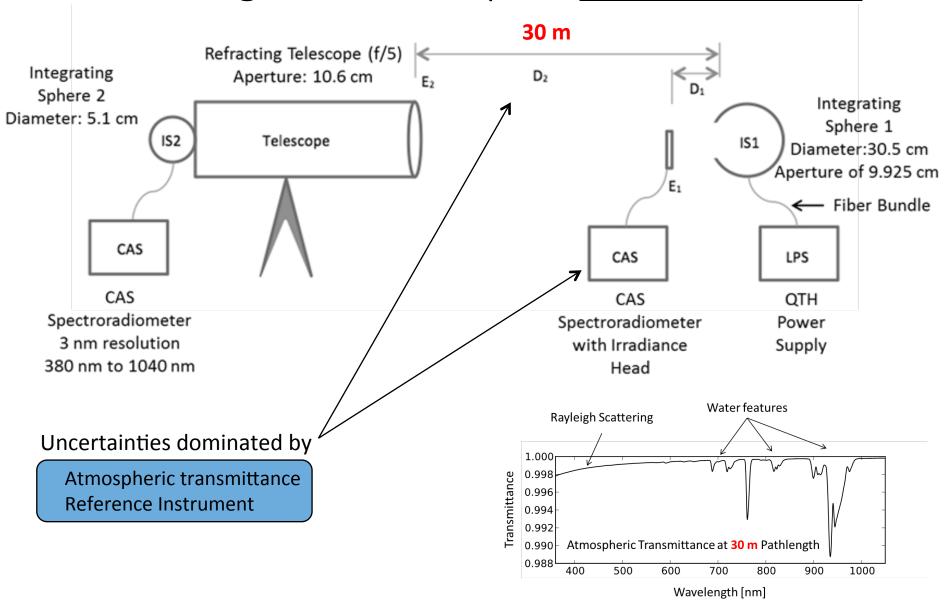
NIST measurements of TOA Lunar Irradiance Whipple Observatory, Mt Hopkins, Amado AZ

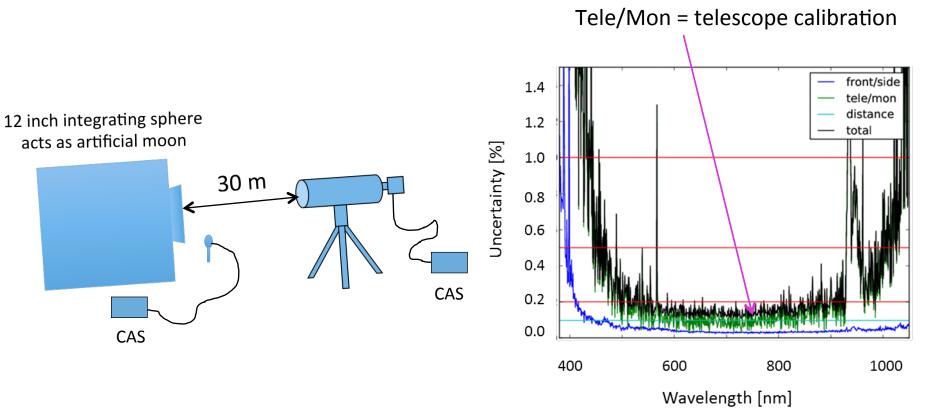
Santa Rita Mountains, Coronado National Forest, ~30 miles from Nogales, Mexico



Set our uncertainty goals to be 1 % or less (k=2)

NIST Absolute Top-of-the-Atmosphere (TOA) Lunar Irradiance Measurements have been made at the Whipple Observatory, Mt. Hopkins, AZ for ~ 2 years (two two-week visits, Spring and Fall, per year)


Lunar measurements piggy-backing on a longer time series of stellar measurements designed to establish a suite of SI-traceable absolutely calibrated 'standard' stars

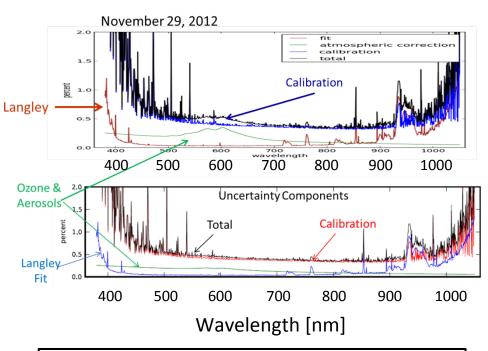


ROLO calibration based on measurements of Vega; NIST standard star measurements include Vega.

Calibrating the Telescope – on the Ground

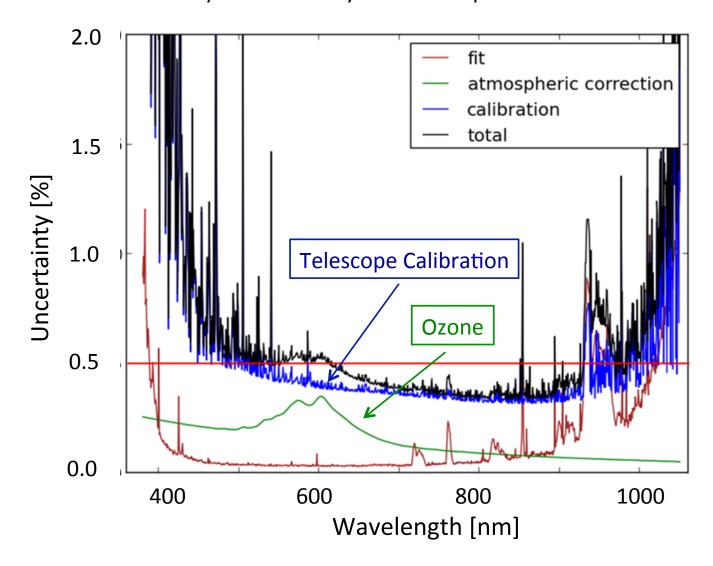
Calibrating the Telescope

- Independent of the uncertainty in the Reference Instrument
- -Uncertainty is between 0.1 % and 0.2 % 500 nm to 900 nm

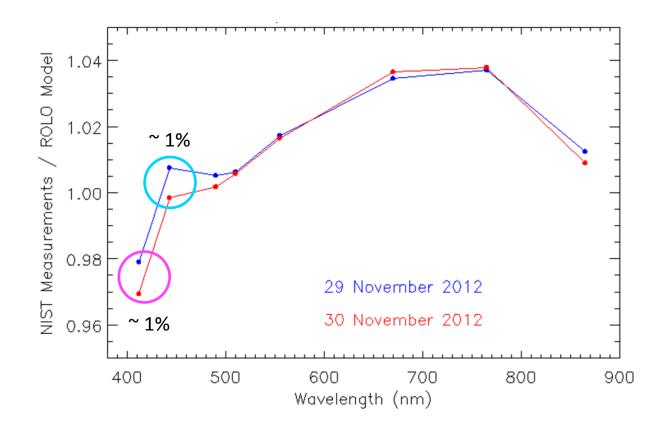

Absolute TOA Lunar Irradiance

Lunar Irradiance

4.0 11/28/2012 11/29/2012 3.5 Irradiance $[\mu W/m^2/nm]$ Phase = 6.6° 3.0 2.5 2.0 1.5 Phase = 16.9° 1.0 0.5 500 700 900 300 1100 Wavelength [nm]

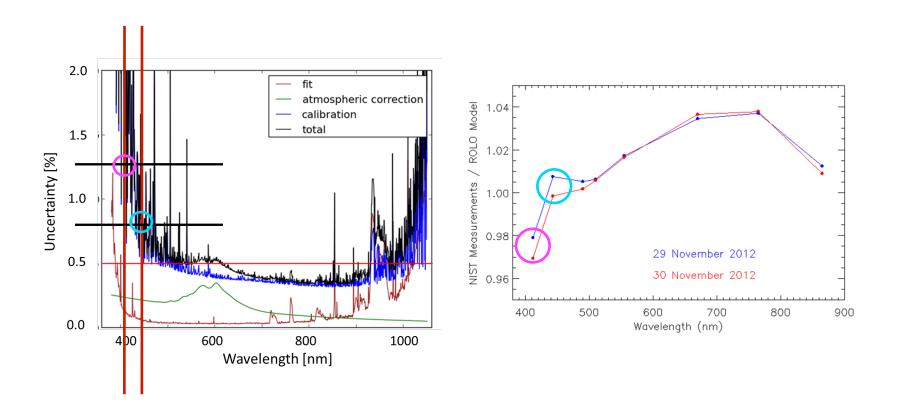

~40 % difference in magnitude 10° difference in phase

Uncertainty Budget

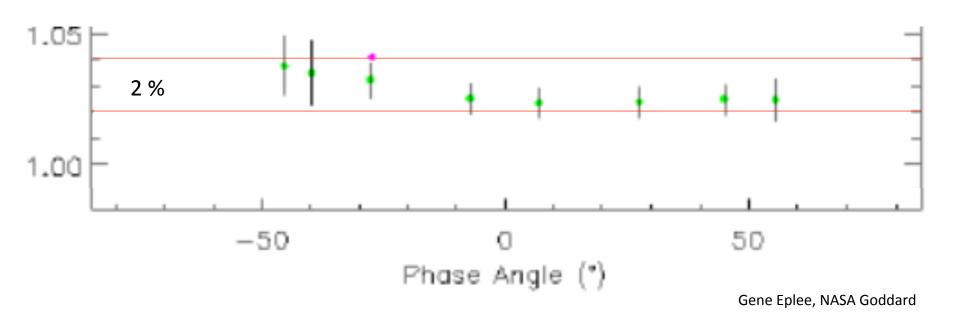

Uncertainty dominated by the Telescope Calibration from 500 nm to 920 nm

Absolute TOA Lunar Irradiance (*k*=1) Uncertainty Budget Uncertainty dominated by the Telescope Calibration

Comparison between Measurements and the ROLO Model Band-averaged to SeaWiFS Bands


	Band Center			
SeaWiFS	Wavelength			
Band	[nm]			
1	412			
2	443			
3	490			
4	510			
5	555			
6	670			
7	765			
8	865			

For the 2 nights, the irradiance differed by 40 % and the phase by 10 %.


(Gene Eplee, NASA Goddard)

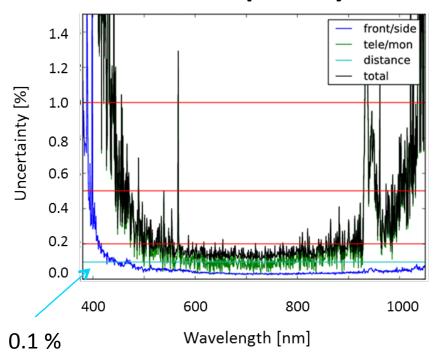
Comparison between Measurements and the ROLO Model Consider Uncertainties

Two lunar irradiance data sets (potential absolute tie-points to the ROLO Model) have k=2 uncertainties 1 % or less from ~500 nm to ~940 nm

Empirical Phase Correction to the ROLO Model from SeaWiFS Measurements of the Moon

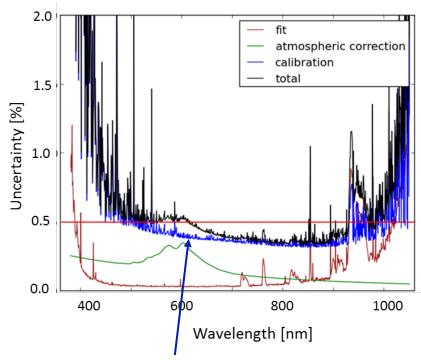
Magnitude of the phase correction : 1.7 % (-50° to -6° and 5° to 60°) Let the uncertainty in the phase dependence of the ROLO Model = 1.7 %

Magnitude of the uncertainty in the libration correction: 0.5 %


Absolute Lunar Irradiance Uncertainty Budget (including uncertainties in phase and libration correction factors)

	Uncerta			
Wavelength [nm]	Absolute Irradiance	Phase Correction (7° to 50°)	Libration correction	Combined Standard Uncertainty [%]
400	1.5	1.7	0.5	2.32
450	0.85	1.7	0.5	1.97
500	0.56	1.7	0.5	1.86
550	0.45	1.7	0.5	1.83
600	0.44	1.7	0.5	1.83
650	0.4	1.7	0.5	1.82
700	0.38	1.7	0.5	1.81
750	0.37	1.7	0.5	1.81
800	0.36	1.7	0.5	1.81
850	0.36	1.7	0.5	1.81
900	0.35	1.7	0.5	1.81

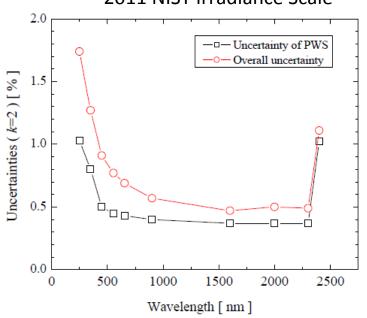
Multi-band filter radiometry Hyperspectral measurements Uncertainties reduced from 5 - 10 % to ~2 %; the tie-points are SI-traceable.


1. Absolute Irradiance

Calibration Uncertainty Telescope Only

Tele/Mon = telescope calibration
Assuming no uncertainty in the
Reference CAS Calibration

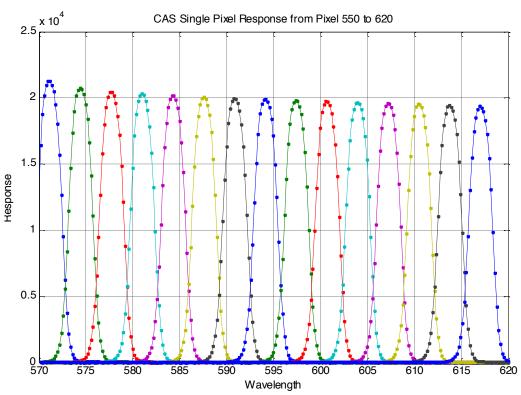
Measurement Uncertainty Lunar Irradiance


Calibration uncertainty component

Uncertainties in the Reference Instrument calibration dominating the TOA Lunar Irradiance Uncertainty budget

Absolute Calibration of the Reference CAS Instrument

FEL-Lamp calibration the single largest source of uncertainty Solution: Map out the Single Pixel Responsivity of every pixel using SIRCUS


Expanded (k = 2) uncertainties of the 2011 NIST Irradiance Scale

Issued Lamps,

k = 2 uncertainty approximately 0.6 % @ 900 nm 0.9 % @ 500 nm 1.25 % @ 350 nm

Single Pixel Responsivities

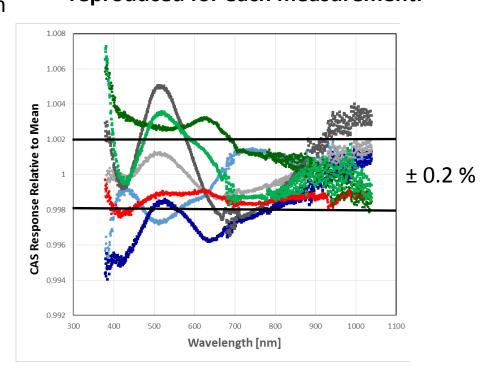
Uncertainty: 0.2 % or less (k=2) Si range

H. Yoon and Charles Gibson, <u>Spectral Irradiance</u> <u>Calibrations</u>, NIST Special Publ. 250-89 (July 2011).

What's new?

Development of Transfer Standard Spectrographs to establish detector-based radiance and irradiance scales

Spectrograph Characteristics

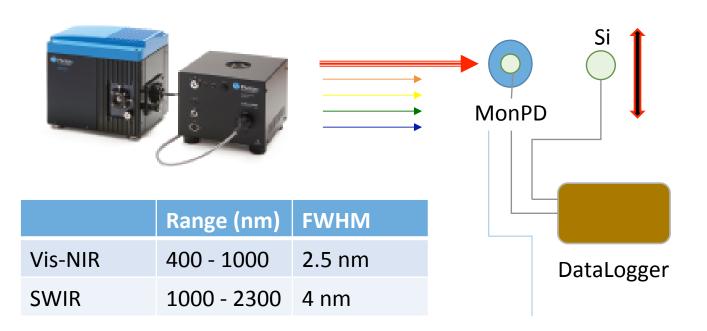

- CCD-based fiber-fed slit spectrograph
- 380 nm to 1040 nm, 4 nm resolution
- Temperature-stabilized CCD

from 11/2012 - 6/2014

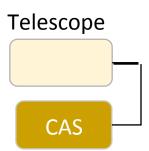
Deployed to Mt. Hopkins and returned to NIST several times

Event where water spilled onto the instrument – and it was left outside for a while to dry

Radiometric Stability v an FEL-lamp Calibration setup not maintained; reproduced for each measurement.


Most of the observed variability from fiber insertion into CAS

Developing Protocols to characterize and calibrate Spectrographs

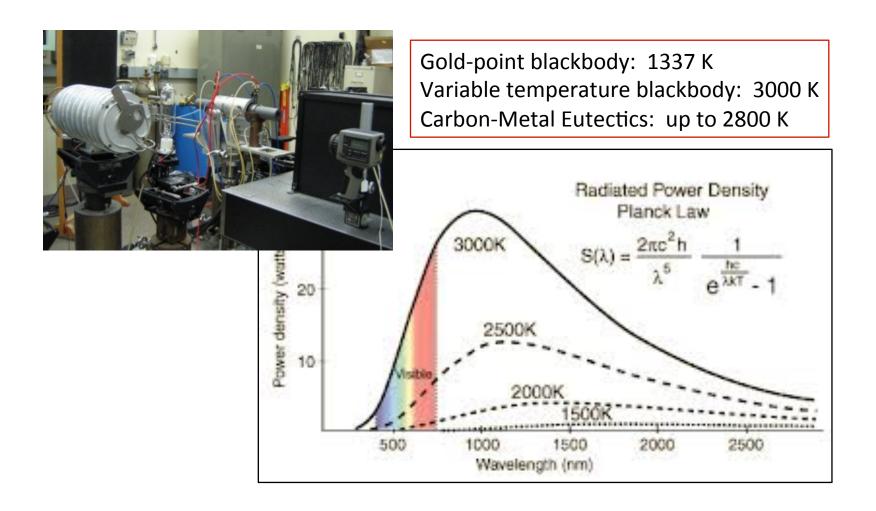

Validate Instrument Responsivity in the field based on Si detectors

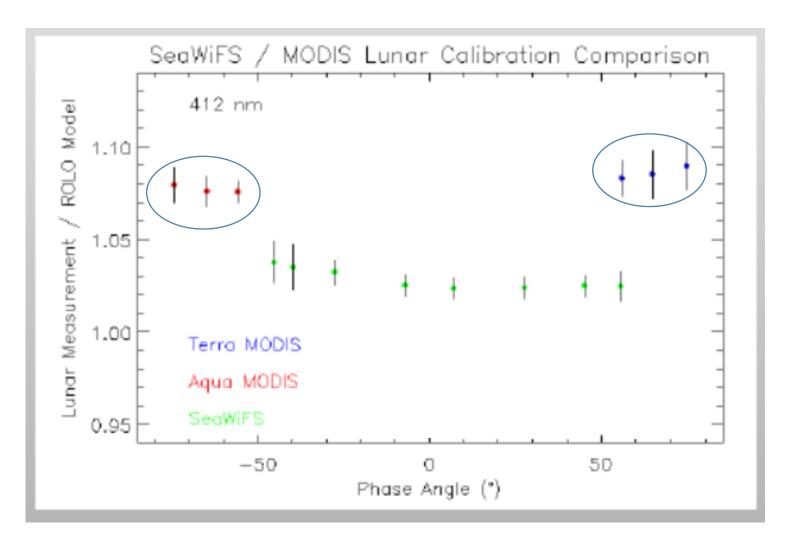
Monochromatic Light from Supercontinuum Source-pumped Laser Line Tunable Filter

Detector-based Scale held on Si photodiodes

WL scale verified by high res SG

Digression: Spectrograph-based Radiance Scale Potential impact on lamp-Illuminated Integrating Sphere uncertainties


- During NASA's Earth Observing System-era, a series of source radiance validation campaigns were planned and executed by the EOS Project Office with the goal of validating the radiances assigned to laboratory calibration sources, principally lamp-illuminated integrating spheres, and establishing an uncertainty budget for the disseminated radiance scale.
- Based on an analysis of 7 years' worth of data, Butler et al.¹ assigned an uncertainty in disseminated <u>radiance scales</u> of 2% to 3% in the Vis/NIR (silicon) region, increasing to 5 % in the short-wave infrared region.


From source-based to detector-based radiance scale (using a Transfer Standard Spectrograph to hold the radiance scale) may reduce the uncertainties in the disseminated Radiance Scale an order of magnitude.

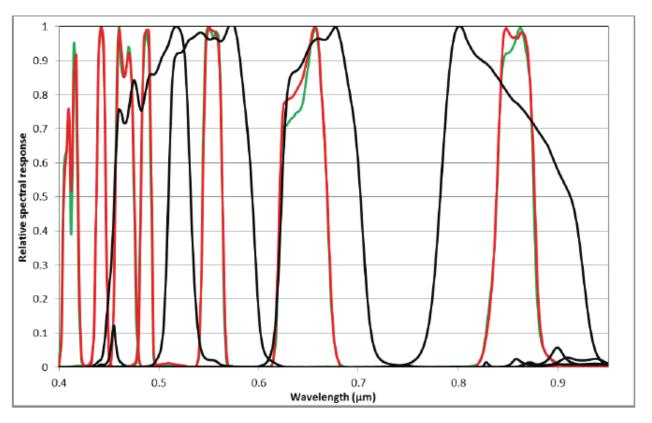
¹Butler, J. J., et al., Validation of radiometric standards for the laboratory calibration of reflected-solar Earth observing satellite instruments, Proc. SPIE 6677, 667707 (2007).

Digression 2: How do we Validate the Spectrograph Calibration NIST primary standard Blackbody Sources

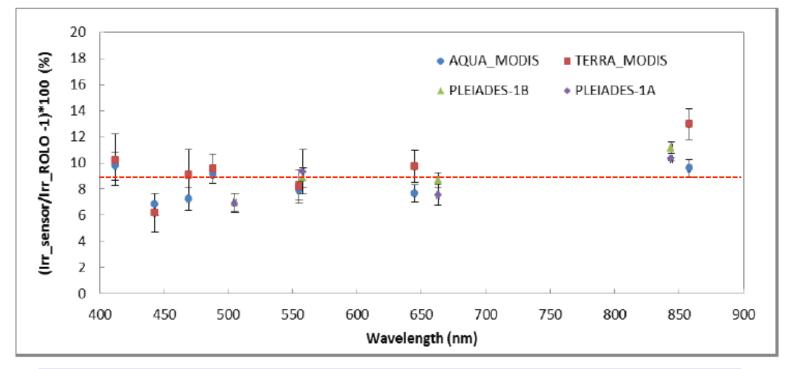
II. Phase dependence

Consider PLEIADES data set

Gene Eplee et al., GSFC



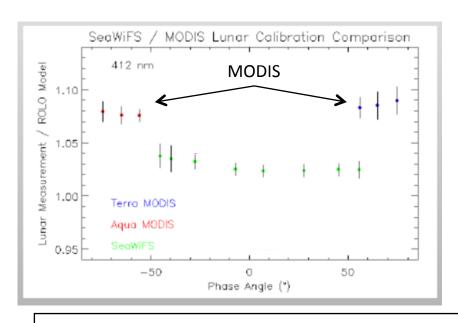
MODIS (US) & PLEIADES I (Fr and Italy) v the ROLO Model Relative Spectral Response of Pleiades and MODIS Bands

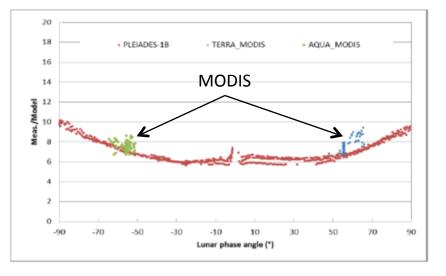

MODIS has many of the same bands as SeaWiFS

Pleiades: Black; Terra MODIS: Green; Aqua MODIS: Red

Xiong, et al., Comparison of MODIS ands PLEIADES Lunar Observations, Proc. SPIE 9241, 924111 (2014).

Pleiades and Modis v ROLO Model Phase angles of +/- 55.5°

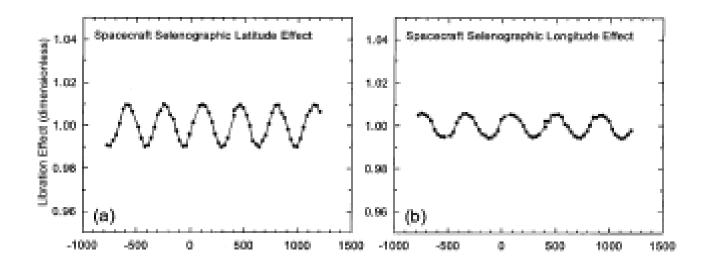



MODIS has an on-board diffuser – derives calibration from solar looks PLEIADES calibration from ground-truth sites.

(SeaWiFS used a lamp-illuminated Integrating Sphere.)

Xiong, et al., Comparison of MODIS ands PLEIADES Lunar Observations, Proc. SPIE 9241, 924111 (2014).

Empirical correction to the Phase dependence of the ROLO Model using MODIS, Pleiades-1B and SeaWiFS measurements


Offsets for SeaWiFS, MODIS and PLEIADES set to 0 at 7° phase using absolute measurements. Fit residual empirical correction, ±60° with an uncertainty of ??

[~0.2 % - about 10 % of the total correction]

(Just a best guess. Need to more closely examine PLEIADES data set)

Xiong, et al., Comparison of MODIS ands PLEIADES Lunar Observations, Proc. SPIE 9241, 924111 (2014).

3. Libration Lunar Phase and Libration Corrections to the ROLO Model using SeaWiFS as a proxy

In 2015, Eplee et al. re-examined the SeaWiFS-based empirical libration correction and came up with an additional 0.2 % over the previous empirical correction. Estimate a 0.2 % uncertainty in the empirical libration correction.

Eplee, J., R. E., F.S. Patt, and G. Meister, Geometric effects in SeaWiFS lunar observations. Proc. SPIE, 2015. 960704-1.

Expectations if

- 1. we can maintain the Spectrograph Uncertainties in the Field
- 2. 0.2 % uncertainty in the Phase Correction holds up

	Uncerta			
				Combined
Wavelength	Absolute	Phase	Libration	Standard
[nm]	Irradiance	Correction	correction	Uncertainty
				[%]
400	0.2	0.2	0.2	0.35
450	0.2	0.2	0.2	0.35
500	0.2	0.2	0.2	0.35
550	0.2	0.2	0.2	0.35
600	0.2	0.2	0.2	0.35
650	0.2	0.2	0.2	0.35
700	0.2	0.2	0.2	0.35
750	0.2	0.2	0.2	0.35
800	0.2	0.2	0.2	0.35
850	0.2	0.2	0.2	0.35
900	0.2	0.2	0.2	0.35

CLARREO Uncertainties: 0.3 % from 500 nm to 900 nm 1 % in other regions

Meet CLARREO uncertainty requirements outside of the 500 nm to 900 nm range To meet CLARREO requirements 0.3 %, k=2: All components reduced to 0.1 %

Additional Tie-points: LASP's HySICS measurements Hear more about the second balloon flight from Greg Kopp

- HySICS instrument
 - 350 nm to 2500 nm; 8 nm resolution or better
 - Uncertainties less than 0.2 %
- Balloon flights
 - 29 Sept 2013 and 18 Aug 2014
 - 8.5 H and 9 H duration
 - ~120,000 ft

Courtesy LASP/Joey Espejo

18Aug2014 flight:

Measured Solar and Lunar Spectral Radiance May provide an additional tie point to the ROLO model & facilitate a comparison with Mt. Hopkins-based Lunar Irradiance

rad

Reducing the Measurement Uncertainty

- 1. Consider high altitude aircraft flights for both Solar and Lunar Irradiance Measurements
- ER2 Flights (2 campaigns/year, 1 to 2 weeks duration
 - Above 95 % of the atmosphere; lower uncertainties achievable quickly
 - Lunar measurements would provide tie-points for the ground-based measurements
 - ± 7° phase (Tie to SeaWiFS/PLEIADES)
 - ± 55° phase (Tie to MODIS/PLEIADES)
 - Phase changes ~10 % per night
 - Solar measurements validate the reflectance model of the Moon

- 1. Solar/Lunar measurements taken on different flights
 - instrument can be configured for the particular measurement.
- 2. Pre and post calibrations in addition to in-flight monitoring

Reducing the Measurement Uncertainty Establish a Lunar/Solar Observatory on Mauna Loa, HI

- Elevation
 - Mt Hopkins elevation 2367m
 - Mauna Loa elevation 4169 m
- Atmospheric Characterization

- Increase our yield through continuous daily measurements of Solar & Lunar Spectral Irradiance
 - a remotely operated permanent facility

Ideally, generate a new data set to refine the ROLO Model.